
1 BASIC NOTIONS

Definition 1.1 A topological space is a pair (X,T ) (usually abbreviated to X) where X is a
set and T a family of subsets of X such that:

1. ∅ ∈ T ;

2. X ∈ T ;

3. for each U, V ∈ T , U ∩ V ∈ T ;

4. for each F ⊂ T , ∪F ∈ T , where ∪F = {x ∈ X / there is U ∈ F such that x ∈ U}.

T is called a topology for X and the elements of T are called open sets.

Definition 1.2 Let (X,T ) and (Y,U) be topological spaces and f : X → Y a function. Then
f is continuous iff for each U ∈ U , we have f−1(U) ∈ T . A continuous function is also called
a map. A continuous bijection whose inverse is also continuous is called a homeomorphism.
Spaces X and Y are homeomorphic iff there is a homeomorphism from X to Y (equivalently,
from Y to X).

Definition 1.3 A property of topological spaces is called a topological property iff whenever it
is possessed by a given space it is also possessed by all homeomorphic spaces.

The fundamental objects of study in topology are the topological spaces and maps: they
form a category. The primary goal of topology is to classify topological spaces up to homeo-
morphism and the principal tool is the topological property. The general task is hopeless, but
there has been success in special cases: moreover, the attempt has led to many interesting and
valuable results and applications. For example, the study of fixed points is useful in the theory
of differential equations; the study of singularities of differentiable maps has resulted in a classi-
fication of these in low dimensions, the finiteness of this classification leading to the practicality
of catastrophe theory with its applications in diverse areas such as Physics, Biology, Economics,
Linguistics; the study of the placement of sets, especially of curves, in 3-dimensional space has
led to knot theory with applications in Biology and Physics.

Any attempt to classify in some suitable way the finite topological spaces is likely to be
unsuccessful, and as the following table shows, even the number of topologies on a finite set
follows a strange pattern; indeed there seems to be no simple formula for this number. In
this table, the number of distinct topologies on a set of n elements is denoted by t(n) and the
number of homeomorphism classes of such topologies is denoted by h(n).

n 1 2 3 4 5 6 7 8
t(n) 1 4 29 355 6942 209527 9535241 642779354
h(n) 1 3 9 33 139 718 4535

Example 1.4 Examples of topological spaces.

1. Declare any subset of R to be open iff it is a union of open intervals. Then the set
of open subsets of R forms a topology on R, called the usual topology. More generally,
declare any subset of Rn to be open iff it is a union of open “cubes”, i.e. sets of the form
{(x1, x2, . . . , xn) / ai < xi < bi}, for some ai and bi. Again the family of open sets forms
a topology on Rn called the usual topology.
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2. Let (X, d) be any metric space. Declare a subset U ⊂ X open iff for each x ∈ U there is
r > 0 such that Bd(x; r) ⊂ U , where Bd(x; r) consists of all y ∈ X for which d(x, y) < r.
This is the topology induced by the metric d. It is the same as the usual topology on R
and Rn if we take as d the Pythagorean metric.

If (X,T ) is a topological space such that there is a metric d on X for which T is induced
by d then we say that (X,T ) is metrisable. A big sub-problem of topology is to decide
when a given space is metrisable.

3. Let X be any set and topologise X by declaring only ∅ and X to be open. This, the
smallest possible topology on X, is called the indiscrete topology.

4. Topologise any set X by declaring all subsets to be open. This, the largest topology on
X, is called the discrete topology. Unlike the indiscrete topology, it is a special case of
a metric topology, where the metric is the discrete metric in which the distance between
two different points is always 1.

5. Declare any subset of R to be open iff it is a union of intervals of the form [a, b). This,
the right half-open interval topology, is not metrisable, but obviously it differs from the
indiscrete topology.

Example 1.5 Examples of continuous functions.

1. Any function whose range is indiscrete is continuous.

2. Any function whose domain is discrete is continuous.

3. Any function between metric spaces is continuous in the metric sense iff it is continuous
in the sense of Definition 1.2 when the spaces are given the topologies induced by the
metrics.

Definition 1.6 Let (X,T ) be a topological space. A subfamily B of T is a basis for T provided
every member of T is a union of members of B. [Thus {[a, b) / a, b ∈ R} is a basis for the right
half-open interval topology of 5 of Example 1.4.] A subfamily S of T is a sub-basis provided
the family of all finite intersections of members of S is a basis for T . Any family F of subsets
of X is a sub-basis for a unique topology on X, called the topology generated by F .

Proposition 1.7 A family B of subsets of a set X is a basis for a topology on X if and only
if:

1. For each x ∈ X there is B ∈ B such that x ∈ B; and

2. For each B1, B2 ∈ B and each x ∈ B1 ∩B2 there is B3 ∈ B so that x ∈ B3 ⊂ B1 ∩B2.

Proof. ⇒: Suppose B is a basis for a topology T . By definition, X is open so is a union of
members of B; this is equivalent to 1. Given B1, B2 ∈ B, and x ∈ B1 ∩ B2, it follows that
B1, B2 ∈ T , so that B1 ∩B2 ∈ T . Thus B1 ∩B2 is a union of members of B, one of which must
contain x and lie in B1 ∩B2.

⇐: Given a collection B satisfying 1 and 2, let T denote the family of all subsets of X which
are a union of some members of B.

1. ∅ ∈ T since ∅ is the union of the subcollection ∅ of B.

2. X ∈ T by condition 1 on B.
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3. If U, V ∈ T and x ∈ U ∩ V then there are B1, B2 ∈ B such that x ∈ B1 ⊂ U and
x ∈ B2 ⊂ V . By condition 2 on B there is B3 ∈ B such that x ∈ B3 ⊂ B1 ∩ B2;
thus x ∈ B3 ⊂ U ∩ V . This shows that for each x ∈ U ∩ V there is Bx ∈ B such that
x ∈ Bx ⊂ U ∩ V , hence that U ∩ V is a union of members of B and so U ⊂ V ∈ T .

4. For each F ⊂ T , ∪F ⊂ T is obvious.

Often it is more convenient to specify a topology by describing a basis for the topology. The
criterion of Proposition 1.7 is useful in this regard.

Definition 1.8 Let (X,T ) be a topological space. A subset N of X is a neighbourhood of
x ∈ X iff there is U ∈ T such that x ∈ U ⊂ N . Let N (x) denote the collection of all
neighbourhoods of x. A subfamily M of N (x) is a basis of neighbourhoods at x provided for
each N ∈ N (x) there is M ∈M such that M ⊂ N .

Note that there is no requirement that neighbourhoods be open. Occasionally authors do insist
that their neighbourhoods are open.

Proposition 1.9 Let (X,T ) and N (x) be as above. Then

1. N ∈ N (x) ⇒ x ∈ N ;

2. N1 ∈ N (x) and N1 ⊂ N2 ⊂ X ⇒ N2 ∈ N (x);

3. N1,N2 ∈ N (x) ⇒ N1 ∩N2 ∈ N (x);

4. For each N ∈ N (x) there is M ∈ N (x) such that y ∈ M ⇒ N ∈ N (y).

Proof. Easy.

Lemma 1.10 Let (X,T ) and N (x) be as above and let U ⊂ X. Then U ∈ T iff whenever
x ∈ U , it follows that U ∈ N (x).

Proof. ⇒: obvious.
⇐: For each x ∈ U there is Ux ∈ T such that x ∈ Ux ⊂ U . By Definition 1.1, ∪x∈UUx ∈ T .

But U = ∪x∈UUx , so U ∈ T .

Proposition 1.11 Let T1 and T2 be two topologies on a set X with Ni(x) the corresponding
families of neighbourhoods. Then T1 = T2 iff for each x ∈ X, N1(x) = N2(x).

Proof. ⇒: trivial.
⇐: Let U ⊂ X. By Lemma 1.10 and hypothesis, U ∈ T1 iff for each x ∈ U , U ∈ N1(x) iff

for each x ∈ U , U ∈ N2(x) iff U ∈ T2, so T1 = T2 as required.

Theorem 1.12 Let X be a set and suppose that to each x ∈ X, there is assigned a non-empty
family N (x) of subsets of X satisfying 1 to 4 of Proposition 1.9. Then there is a unique topology
on X having N (x) as its family of neighbourhoods for each x ∈ X.

Proof. Let T = {U ⊂ X / x ∈ U ⇒ U ∈ N (x)}. Then T is clearly a topology for X. For
each x ∈ X, let M(x) denote the family of neighbourhoods of x in (X,T ). We show that
M(x) = N (x).

Suppose M ∈ M(x). Then there is U ∈ T such that x ∈ U ⊂ M. By definition of T ,
x ∈ U ⇒ U ∈ N (x), so by 1 of Proposition 1.9, M ∈ N (x). Thus M(x) ⊂ N (x).
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Suppose N ∈ N (x). Let U = {y ∈ X / N ∈ N (y)}. If y ∈ U , then by 4 of Proposition 1.9
there is My ∈ N (y) such that z ∈ My ⇒ N ∈ N (z). By definition of U , we have My ⊂ U , so,
since My ∈ N (y), we also have U ∈ N (y), so by definition of T , U ∈ T . Now by Lemma 1.10,
U ∈ M(x), so, since U ⊂ N , N ∈ M(x) by 2 of Proposition 1.9. Hence N (x) ⊂M(x), and so
M(x) = N (x) as required.

The significance of Theorem 1.12 is that we could have defined a topological space by
axiomatising its neighbourhood systems using conditions 1 to 4 of Proposition 1.9. Often this
approach is more convenient.

Definition 1.13 A subset A of a topological space (X,T ) is closed iff (X −A) ∈ T .

Proposition 1.14 Closed sets satisfy the following:

1. X is closed;

2. ∅ is closed;

3. the union of any two closed sets is closed;

4. the intersection of an arbitrary family of closed sets is closed.

Proof. Easy.
Compare conditions 1 to 4 above with those of Definition 1.1 for open sets.

Definition 1.15 Let A ⊂ X. By 4 of Proposition 1.14, the intersection of the (non-empty!)
family {C ⊂ X / A ⊂ C and C is closed} is a closed set containing A: in fact the smallest
closed set containing A. This set is called the closure of A, denoted Ā or clA. Dually, using 4
of Definition 1.1, there is a largest open set contained in A, called the interior of A, denoted Å
or intA.

Of course, we cannot expect the intersection of all open sets containing A to be open nor the
union of all closed sets contained in A to be closed. For example, let A = [0, 1), a subset of R
with the usual topology. Then A is neither open nor closed although it is both the intersection
of all open sets containing A and the union of all closed sets contained in A.

Definition 1.16 Let A ⊂ X. A point x of X is an accumulation point of A iff x ∈ A− {x}.
The derived set, A′, of A is the set of all accumulation points. The frontier, frA, of A is the
set Ā ∩X −A.

Proposition 1.17 Let A ⊂ X. Then

Ā = {x ∈ X / for each N ∈ N (x), A ∩N 6= ∅} = A ∪A′ = A ∪ frA.

Proof. If x /∈ Ā,then by Lemma 1.10, X − Ā ∈ N (x). Since A ∩ (X − Ā) ⊂ Ā ∩ (X − Ā) = ∅,
we deduce that {x ∈ X / for each N ∈ N (x), A ∩N 6= ∅} ⊂ Ā.

Suppose x ∈ X and N ∈ N (x) are such that A ∩N = ∅. Then there is open U such that
x ∈ U ⊂ N ⊂ X − A. Thus A is contained in the closed set X − U , so Ā ⊂ X − U and hence
x /∈ Ā. Thus Ā ⊂ {x ∈ X / for each N ∈ N (x), A ∩N 6= ∅}.

If x ∈ Ā−A, then A− {x} = Ā, so x ∈ A− {x}, i.e. x ∈ A′. Thus Ā ⊂ A∩A′. ClearlyA ⊂ Ā
and if x ∈ A′, then x ∈ A− {x} ⊂ Ā, so A′ ⊂ Ā.

By definition, A∪ frA ⊂ Ā. If x ∈ Ā−A, then x ∈ X−A, so x ∈ X −A and hence x ∈ frA:
thus Ā ⊂ A ∪ frA.
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Definition 1.18 Let f : X → Y be a function between topological spaces. Then f is continuous
at x ∈ X iff for each neighbourhood N of f(x) in Y , f−1(N) is a neighbourhood of x in X.

Theorem 1.19 Let f : X → Y be a function between topological spaces. Then the following
conditions are equivalent:

(i) f is continuous;

(ii) for each x ∈ X, f is continuous at x;

(iii) if B is a basis for Y then for each U ∈ B, f−1(U) is open in X;

(iv) if S is a sub-basis for Y then for each U ∈ S, f−1(U) is open in X;

(v) for each closed subset C of Y , f−1(C) is closed in X;

(vi) for each A ⊂ X, f(Ā) ⊂ f(A);

(vii) for each B ⊂ Y , f−1(B) ⊂ f−1(B̄);

(viii) for each B ⊂ Y , f−1(B̊) ⊂ int(f−1(B)).

Proof. (i)⇒(ii): let x ∈ X and N ∈ N (f(x)). Then by definition there is U , open in Y , such
that f(x) ∈ U ⊂ N . By (i), f−1(U) is open in X and contains x, so f−1(U) ∈ N (x). Since
f−1(U) ⊂ f−1(N), 2 of Proposition 1.9 tells us that f−1(N) ∈ N (x).

(ii)⇒(iii): let B be a basis for the topology of Y and let U ∈ B. By Lemma 1.10, it suffices
to show that f−1(U) is a neighbourhood of each of its points. But if x ∈ f−1(U) then f(x) ∈ U ,
so U ∈ N (f(x)). Hence by (ii), f−1(U) ∈ N (x) as required.

(iii)⇒(iv): trivial.
(iv)⇒(v): suppose C is closed in Y and let x ∈ X − f−1(C). Then f(x) ∈ Y − C which is

open, so there are U1, . . . , Un ∈ S such that f(x) ∈ U1 ∩ . . . ∩ Un ⊂ Y − C. By (iv), f−1(Ui) is
open, so f−1(U1)∩ . . .∩f−1(Un) is open in X. But f−1(U1)∩ . . .∩f−1(Un) = f−1(U1∩ . . .∩Un),
and x ∈ f−1(U1 ∩ . . . ∩ Un) ⊂ X − f−1(C), so X − f−1(C) ∈ N (x). Hence by Lemma 1.10,
X − f−1(C) is open and hence f−1(C) is closed in X.

(v)⇒(vi): given A ⊂ X, f(A) is closed in Y so by (v), f−1(f(A)) is closed in X. But
A ⊂ f−1(f(A)) ⊂ f−1(f(A)), so Ā ⊂ f−1(f(A)) and hence f(Ā) ⊂ f(A).

(vi)⇒(vii): given B ⊂ Y , letting A = f−1(B) in (vi), we have f(f−1(B)) ⊂ f(f−1(B)) ⊂ B̄,
so f−1(B) ⊂ f−1(B̄).

(vii)⇒(viii): given B ⊂ Y , apply (vii) to Y − B to obtain f−1(B̊) = f−1(Y − Y −B) =
X − f−1(Y −B) ⊂ X − f−1(Y −B) = X −X − f−1(B) = int(f−1(B)).

(viii)⇒(i): let U be open in Y : thus Ů = U , so by (viii), f−1(U) ⊂ int(f−1(U)). Clearly
int(f−1(U)) ⊂ f−1(U), so f−1(U) = int(f−1(U)) and hence is open.

Proposition 1.20 Let f : X → Y and g : Y → Z be continuous. Then gf : X → Z is
continuous.

Proof. Obvious from the definition.
Let A be a subset of the space (X,T ). By declaring open all subsets of A of the form U ∩A

for U ∈ T we obtain a topology for A with which A is called a subspace of X. Let i : A → X
denote the inclusion function.

Proposition 1.21 i : A → X is continuous. Hence if f : X → Y is continuous then so is
f |A : A → Y .
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Proof. If U is open in X then i−1(U) = U ∩A is open in A, so i is continuous. The second part
follows from Proposition 1.20 since f |A = fi.

Theorem 1.22 Suppose {Xα / α ∈ A} is a collection of subspaces of a topological space X
whose union is X and f : X → Y is a function. Let fα = f |Xα and suppose fα each is
continuous. Then f is continuous provided either:

(i) each Xα is open; or

(ii) each Xα is closed and A is finite.

Proof. (i) Let U be open in Y . Then for each α ∈ A, f−1
α (U) is open in Xα and hence, since

each Xα is open in X, f−1
α (U) is open in X. But f−1(U) = ∪α∈Af−1

α (U), so f−1(U) is open
and f is continuous.

(ii) Let C be closed in Y . Then for each α ∈ A, f−1
α (C) is closed in Xα and hence, since

each Xα is closed in X, f−1
α (C) is closed in X. But f−1(C) = ∪α∈Af−1

α (C), a finite union, so
f−1(C) is closed and f is continuous.

Note that we cannot in general remove the finiteness condition from (ii). For example, let
X = R and for each α ∈ R, let Xα = {α}. For any function f : R → R, fα is continuous, but f
need not be continuous.

Definition 1.23 Let {Xα / α ∈ A} be a family of topological spaces and suppose that for each
α, β ∈ A with α 6= β we have Xα ∩Xβ = ∅. By the topological sum, ΣXα, of these spaces we
mean the set X = ∪α∈AXα topologised by declaring U ⊂ X open iff for each α ∈ A, U ∩Xα is
open in Xα.

Note that the inclusion functions Xα → X are continuous: in fact Xα is a subspace of X.

Definition 1.24 Let {Xα / α ∈ A} be a family of topological spaces. By the topological
product of this family we mean the set

X = ΠXα = {x : A → ∪α∈AXα / for each α ∈ A,x(α) ∈ Xα},

furnished with the Tychonoff topology. The family

{ΠUα / Uα is open in Xα and Uα 6= Xα for at most one index α ∈ A}

forms a sub-basis for the Tychonoff topology, and is called the standard sub-basis.
For each x ∈ X and α ∈ A , denote x(α) by xα. Define for each α ∈ A, the αth projection

πα : X → Xα by πα(x) = xα.

{ΠUα / Uα is open in Xα and Uα 6= Xα for at most finitely many indices α ∈ A}

is called the standard basis for the Tychonoff topology.
If A = {1, . . . , n} then ΠXα is usually written X1 × . . .×Xn.

Proposition 1.25 The Tychonoff topology is the smallest topology on X for which the projec-
tions πα are continuous.
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Proof. πα is continuous when X is given the Tychonoff topology, for if Uα is open in Xα

then π−1
α (Uα) = Πβ∈AUβ, where Uβ = Xβ if β 6= α. By definition, Πβ∈AUβ is open, so πα is

continuous.
Let T be any topology on X with respect to which each projection is continuous. We must

show that T contains the Tychonoff topology. It suffices to show that T contains the standard
sub-basis. Given {Uα} with each Uα open in Xα and Uα = Xα except possibly for the one index
β. Then ΠUα = π−1

β (Uβ). By continuity of πβ, the set π−1
β (Uβ) is open in T . Thus ΠUα ∈ T .

Proposition 1.26 A function f : Y → ΠXα, where Y and each Xα are topological spaces, is
continuous iff for each α ∈ A, παf is continuous.

Proof. We need only show that if παf is continuous for each α, then f is continuous.
Let ΠUβ be a member of the standard sub-basis of X, with Uβ = Xβ unless β = α. Now

πα(ΠUβ) = Uα which is open in Xα so by continuity of παf , (παf)−1(Uα) is open. Of course,
(παf)−1(Uα) = f−1(ΠUβ).

Corollary 1.27 Let {fα : Xα → Yα / α ∈ A} be a family of continuous functions. Define the
product of this family, f : X → Y , by f(x)(α) = fα(xα). Then f is continuous.

Proof. Let ρα : Y → Yα be the αth projection. Then we have ραf = fαπα. Since fαπα is
continuous, so is f by Proposition 1.26.

Proposition 1.28 For each α ∈ A, πα : X → Xα is an open map, i.e., for each open U ⊂ X,
πα(U) is open in Xα.

Proof. Given α ∈ A and U open in X, suppose that xα ∈ πα(U). Then there is x ∈ U
such that πα(x) = xα. Thus there are α1, . . . , αn ∈ A and open subsets Uαi of Xαi such that
x ∈ ΠUβ ⊂ U , where Uβ = Xβ if β /∈ {α1, . . . , αn}. Then xα ∈ Uα = πα(ΠUβ) ⊂ πα(U), so
πα(U) is open.

We cannot in general replace “open” by “closed” in Proposition 1.28, i.e. πα is not in general
a closed map. For example, R2 is (homeomorphic to) the product of R with itself but projection
onto either factor of the closed set {(x, y) ∈ R2 / xy = 1} is the non-closed set (−∞, 0)∪ (0,∞).

Definition 1.29 Let X be any topological space and ∼ an equivalence relation on X. Let X/ ∼
denote the set of equivalence classes and π : X → X/ ∼ the natural projection. By the quotient
space of X by ∼ is meant the set X/ ∼ topologised by declaring U ⊂ X/ ∼ to be open iff π−1(U)
is open.

Proposition 1.30 Let X and Y be spaces, ∼ an equivalence relation on X and f : X/ ∼→ Y
a function. Then f is continuous iff fπ is continuous.

Proof. Easy.

Definition 1.31 Let X be any space. By the cone on X is meant the space cX defined as
follows: let v be any point not in X × [0, 1]. Give {v} the only possible topology and X × [0, 1]
the Tychonoff topology. Define the equivalence relation ∼ on the topological sum {v}+(X×[0, 1])
to be that generated by v ∼ (x, 1), for each x ∈ X. Then cX is the quotient [{v}+(X×[0, 1])]/ ∼.
The equivalence class of v is the vertex of the cone. We can think of X as a subspace of cX by
identifying x ∈ X with the equivalence class of (x, 0).
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Definition 1.32 Let f : X → Y be a map. By the mapping cylinder of f is meant the space
Zf defined as follows: consider the topological sum (X × [0, 1]) + Y (if (X × [0, 1]) ∩ Y 6= ∅,
replace Y by a homeomorph which is disjoint from X × [0, 1] ). Define the equivalence relation
∼ on (X × [0, 1]) + Y to be that generated by (x, 1) ∼ f(x). Then Zf is the quotient space
[(X × [0, 1]) + Y ]/ ∼. As in the case of cX, we can think of X as a subspace of Zf . Y is also
able to be treated as a subspace of Zf .

Exercises

1. Let X be a set and T a family of subsets of X. Prove that T is a topology for X iff

(a) the intersection of any finite sub-family of T is a member of T and
(b) the union of any sub-family of T is a member of T .

2. Construct all possible topologies on a set of 3 elements and divide them into homeomor-
phism classes.

3. Let X be a set. Let T be the family of subsets of X consisting of ∅ together with all
subsets whose complement in X is finite. Verify that T is a topology on X. T is called the
cofinite topology. Note that we can replace “finite” by “countable” to get the cocountable
topology.

4. Construct a basis for the topology in Exercise 3 which differs from the topology itself.

5. Show that the countable family B = {(a, b) / a < b and a and b are rational} is a basis
for the usual topology on R.

6. Show that the countable family B = {[a, b) / a < b and a and b are rational} is a basis
for a topology on R. Is this the right half-open interval topology of Example 1.4?

7. The subsets A±, . . . , I±,X and Y of R3 are defined by

A+ = [3, 5] × [−1, 1]× [−3, 7], A− = [−1, 1] × [3, 5] × [−7, 3],
B+ = [−5,−3]× [−1, 1] × [−3, 7], B− = [−1, 1] × [−5,−3]× [−7, 3],
C+ = [−5, 5]× [−1, 1] × [5, 7], C− = [−1, 1] × [−5, 5] × [−7,−5],
D+ = [−5, 5] × [−1, 1]× [−3,−1], D− = [−1, 1] × [−5, 5] × [1, 3],
E+ = [−1, 1]× [−1, 1] × [5, 11], E− = [−1, 1] × [−1, 1] × [−11,−5],
F+ = [−1, 9] × [−1, 1]× [9, 11], F− = [−1, 9]× [−1, 1] × [−11,−9],
G+ = [7, 9] × [−1, 1] × [−4, 11], G− = [7, 9] × [−1, 1]× [−11, 4],
H+ = A+ ∪ . . . ∪G+, H− = A− ∪ . . . ∪G−,
I+ = T (H+), I− = T−1(H−),
X = H+ ∪H−, Y = I+ ∪ I−.

In the definition above, T : R3 → R3 is defined by T (x, y, z) = (x, y, z + 4).
Prove that

(a) X is homeomorphic to Y ;
(b) there is a homeomorphism h : R3 → R3 such that h(X) = Y .

8. Let X be a topological space. Define two functions c,cl: P(X) → P(X), where P(X), the
power set of X, consists of all subsets of X, by c(A) = X −A and cl(A) = Ā.

Prove that there are at most 14 distinct subsets of X obtained from a given subset A by
successive applications of the functions c and cl. Give an example of a subset of R for
which there are 14 such distinct sets.
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9. Is Å = A− frA?

10. Say that a point x is near a subset A of a topological space X and write xνA iff x ∈ Ā.
Let f : X → Y be a function where X and Y are two topological spaces. Let x ∈ X.
Prove that f is continuous at x iff for each A ⊂ X, xνA ⇒ f(x)νf(A).

11. Let X and Y be two finite sets. It is desired to find all triples (f, g, h) of functions from
X to Y such that whatever topologies are imposed on X and Y , if f and g are continuous
then so is h. One way to find these is to use a computer to search for such triples.
However, the number of topologies on a set of n elements grows rather quickly with n so
one must look for ways of shortening the procedure. Prove that (f, g, h) is such a triple iff
for each V ⊂ Y , h−1(V ) is one of the following: ∅,X, f−1(V ), g−1(V ), f−1(V ) ∩ g−1(V ),
and f−1(V ) ∪ g−1(V ).

12. Cantor’s ternary set, C, is defined to be the intersection of the sequence C0, C1, . . . , where
C0 = [0, 1] and for i > 0, Ci is the union of 2i closed intervals obtained from the 2i−1

closed intervals of Ci−1 by removing from each of these intervals the open middle third of
the interval. Thus

C1 =
[
0,

1
3

]
∪

[
2
3
, 1

]
, C2 =

[
0,

1
9

]
∪

[
2
9
,
1
3

]
∪

[
2
3
,
7
9

]
∪

[
8
9
, 1

]
, etc.

Prove that C is homeomorphic to 2 where 2 is the discrete space on two points, and
2 denotes the product of countably many copies of the space 2 (i.e., each of the factor
spaces is the space 2).

13. Let {Xα / α ∈ A} be a family of topological spaces. Show that the family
{ΠUα / Uα is open in Xα} forms a basis for a topology on ΠXα. This topology is called
the box topology and seems to be a more natural generalisation of the topology on R2

having as basis the open rectangles. Show that for A finite, the Tychonoff topology and
the box topology are the same, but that they can differ for A infinite. In the latter case,
the box topology has too many open sets. Construct an example showing that Proposition
1.26 is false if we use the box topology in place of the Tychonoff topology.

14. Show that the cone cX on X is really just a particular example of a mapping cylinder.

15. Let X = [−1, 1] and Y = {(x, y) ∈ R2 / 0 ≤ y ≤ 1 and |x| ≤ 1 − y}, with topologies
inherited as subspaces of R and R2 respectively. (Thus Y consists of the union of all line
segments joining (0, 1) to the closed line segment from -1 to 1 on the x-axis.) Prove that
cX is homeomorphic to Y . What happens if we replace X by the open interval and let Y
join (0, 1) to the open line segment?

16. Let X = {(x, y, z) ∈ R3 / x2 + y2 = 1 and 0 < z < 1} , Y = [−1, 1] × (0, 1) and
Z = (−1, 1)× (0, 1)∪{2}× (0, 1). Give X the subspace topology inherited from the usual
topology on R3, and Y the subspace topology inherited from the usual topology on R2.

Define ∼ on Y by declaring (x, y) ∼ (x′, y′) if and only if either (x, y) = (x′, y′) or
{x, x′} = {−1, 1} and y = y′.

For each a, b, r ∈ (0, 1) with a < b, let Ra,b,r = ((−1,−r) ∪ (r, 1) ∪ {2}) × (a, b), and let

B = {U ∩ (−1, 1)× (0, 1) / U is open in the usual topology on R2}
∪{Ra,b,r / a, b, r ∈ (0, 1) and a < b}.
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(a) Prove that ∼ is an equivalence relation on Y .

(b) Construct a natural homeomorphism X → Y/ ∼.

(c) Prove that B is a basis for a topology on Z.

(d) Construct a natural homeomorphism Y/ ∼→ Z when Z has the topology considered
in (c).

17. Let X = X1 ∪ {0} × {0} × R, where X1 = {(x, y) ∈ R2 / x > 0},
Y = {(x, y) / 0 < x < 1 and − x < y < x} ∪ {0} × {0} × (−1, 1) and
Z = [0, 1)× (−1, 1).

Give Z the subspace topology inherited from the usual topology on R2.

For each a ∈ R and r > 0, let

Na,r = {(x, y) ∈ R2 / 0 < x < r and (a− r)x < y < (a + r)x} ∪ {0} × {0} × (a− r, a + r).

Let

B = {U ∩X1 / U is open in the usual topology on R2} ∪ {Na,r / a ∈ R and r > 0}.

(a) Draw pictures of Na,r for two different values of (a, r).

(b) Prove that B is a basis for a topology on X.

(c) Construct a natural homeomorphism Y → Z when Y has the subspace topology of
the topology considered in (b).

In effect, X1 is opened up at (0, 0) to make room to insert a copy of R there. Y is made
up of an open triangle with (0, 0) as one vertex. The triangle is opened up at this vertex
to make room to insert the copy of (−1, 1) giving the rectangle Z.

18. We can extend the ideas of Exercise 17 in two ways: replace X1 by all of R2 except the
y-axis; open up the now doubled X1 at each point of the y-axis and insert a copy of R at
each of these points. The construction is very similar to that in Exercise 17. Let

Na,r = {(x, y) ∈ R2 / 0 < |x| < r and (a−r)|x| < y < (a+r)|x|}∪{0}×{0}×(a−r, a+r).

With X1 = {(x, y) ∈ R2 / y 6= 0} and X = X1 ∪ {0} × R× R, let Tη : X → X be defined
for each η ∈ R by Tη(x, y) = (x, y + η) and Tη(0, y, z) = (0, y + η, z). Let

B = {U ∩X1 / U is open in the usual topology on R2}∪{Tη(Na,r) / a, η ∈ R and r > 0}.

(a) Draw pictures of Tη(Na,r) for two different values of (η, a, r).

(b) Prove that B is a basis for a topology on X.

(c) Prove that if X is topologised using the basis B then each point of X has an open
neighbourhood homeomorphic to R2.
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